<table>
<thead>
<tr>
<th>STUDY COURSES IN ENGLISH</th>
<th>SEMESTER (WINTER/SPRING)</th>
<th>ECTS</th>
<th>STUDY LEVEL (BSc/MSc)</th>
<th>LECTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pollution Protection*</td>
<td>W</td>
<td>4</td>
<td>BSc</td>
<td>Assistant Professor Dinko Vujević Mail: dvujevic@gfv.hr</td>
</tr>
<tr>
<td>Communication Skills*</td>
<td>W</td>
<td>4</td>
<td>MSc</td>
<td>Associate Professor Violeta Vidaček – Hainš Mail: vvidacek@foi.hr</td>
</tr>
<tr>
<td>Elements of Construction*</td>
<td>S</td>
<td>4</td>
<td>BSc</td>
<td>Professor Miroslav Golub Mail: mgolub@gfv.hr</td>
</tr>
<tr>
<td>Environmental Emissions*</td>
<td>S</td>
<td>5</td>
<td>BSc</td>
<td>Assistant Professor Dinko Vujević Mail: dvujevic@gfv.hr</td>
</tr>
<tr>
<td>Environmental Physical Factors*</td>
<td>W</td>
<td>5</td>
<td>MSc</td>
<td>Assistant Professor Dinko Vujević Mail: dvujevic@gfv.hr</td>
</tr>
<tr>
<td>Ecological Modelling*</td>
<td>W</td>
<td>6</td>
<td>MSc</td>
<td>Master of Science Damir Rumenjak Mail: damir.rumenjak@zg.t-com.hr</td>
</tr>
<tr>
<td>Environmental Risk Assessment*</td>
<td>S</td>
<td>4</td>
<td>MSc</td>
<td>Assistant Professor Dinko Vujević Mail: dvujevic@gfv.hr</td>
</tr>
<tr>
<td>Groundwater Protection*</td>
<td>S</td>
<td>5</td>
<td>MSc</td>
<td>Assistant Professor Hrvoje Meaški Mail: hrvoje.measki@gfv.hr</td>
</tr>
<tr>
<td>Water Management*</td>
<td>W</td>
<td>4</td>
<td>MSc</td>
<td>Associate Professor Ranko Biondić Mail: ranko.biondic@gfv.hr</td>
</tr>
<tr>
<td>Hydrothermal Reservoirs*</td>
<td>S</td>
<td>4</td>
<td>MSc</td>
<td>Professor Miroslav Golub Mail: mgolub@gfv.hr</td>
</tr>
<tr>
<td>Basic Principles of Waste Management*</td>
<td>W</td>
<td>5</td>
<td>BSc</td>
<td>Assistant Professor Aleksandra Anić Vučinić Mail: aav@gfv.hr</td>
</tr>
<tr>
<td>Waste Management*</td>
<td>S</td>
<td>4</td>
<td>MSc</td>
<td>Assistant Professor Aleksandra Anić Vučinić Mail: aav@gfv.hr</td>
</tr>
<tr>
<td>Soil Mechanics I*</td>
<td>W</td>
<td>6</td>
<td>BSc</td>
<td>Assistant Professor Igor Petrović Mail: igor.petrovic@gfv.hr</td>
</tr>
<tr>
<td>Applied Statistics*</td>
<td>W</td>
<td>5</td>
<td>BSc</td>
<td>Assistant Professor Ivan Kovač Mail: ivan.kovac@gfv.hr</td>
</tr>
<tr>
<td>Geostatistics in Environmental Protection*</td>
<td>W</td>
<td>4</td>
<td>MSc</td>
<td>Assistant Professor Ivan Kovač Mail: ivan.kovac@gfv.hr</td>
</tr>
<tr>
<td>Groundwater Modelling*</td>
<td>W</td>
<td>5</td>
<td>MSc</td>
<td>Associate Professor Hrvoje Gotovac Mail: hrvoje.gotovac@gradst.hr</td>
</tr>
<tr>
<td>Mathematics I*</td>
<td>W</td>
<td>8</td>
<td>BSc</td>
<td>Professor Mladen Božičević</td>
</tr>
<tr>
<td>Mathematics II*</td>
<td>S</td>
<td>8</td>
<td>BSc</td>
<td>Professor Mladen Božičević Mail: mladen.bozicevic@gfv.hr Assistant Professor Sanja Kovač Mail: sanja.kovac@gfv.hr</td>
</tr>
<tr>
<td>Bachelor Thesis**</td>
<td>S</td>
<td>5</td>
<td>BSc</td>
<td></td>
</tr>
<tr>
<td>Master Thesis**</td>
<td>W</td>
<td>18</td>
<td>MSc</td>
<td></td>
</tr>
</tbody>
</table>

*Tutorial class, unless the number of applied students is more than 5.

** Exchange students are advised to arrange the exact theme of their project / thesis in coordination between the home university supervisor and the Faculty of Geotechnical Engineering ECTS coordinator, Assistant Professor Anita Ptiček Siročić, anita.pticek.sirocic@gfv.hr
General information about courses:

1. **Air Pollution Protection (4 ECTS)**

The objective of the course is to introduce a student with the basic terms of air pollution protection as well as to adopt the knowledge and skills necessary in the procedures of waste gasses purification.

Within lectures, the following will be delivered:

- Introduction and basic terms in the field of air pollution protection
- Main sources of air pollution: metallurgy, mineral sources industry, process chemical industry, wood etc.
- Air pollution problem solution
- Procedures for minimisation of solid particles and gaseous compounds emissions
- Procedures for minimisation of greenhouse emission: process optimisation, energy saving, use of renewable energy sources
- Procedures for emission minimisation: process optimisation, raw materials exchange, incorporation of exhaust gasses purification devices
- Basic elements and ventilation systems design
- Basic types of exhaust gasses purification devices
- Selection of devices for waste gasses purification
- Devices operating on the basis of gravitational, inertial and centrifugal forces: cyclones, wet collectors, electrostatic precipitators, filters
- Planning and design of the waste gasses purification systems
- Elements of conceptual design
- Feasibility study Control of the waste gasses
- Measures integrated in the procedure of air pollution protection.

Seminars will include analysis of particular case studies from the field of environmental engineering.

Laboratory practicum will include introduction to the Gas Analyser 5000 and determination of parameters in the polluted environment.

2. **Communication skills (4 ECTS)**

Communication - basic terms; Business communication models and elements of business communication; Visual elements of presentation; Verbal and nonverbal communication; Interpersonal communication competences and skills; Rhetoric; Conflict management skills; Motivation for business negotiation; Sales communication; Business Meeting; Job interview; Competences and skills for international communication; Writing business communication; Computer mediated communication; Evaluation methods and examples of good practice

3. **Elements of Construction (4 ECTS)**

Introduction into the complex process of building design and construction; enabling students to understand the logic of construction and its elements, requirements and factors, and the problems which professionals in interdisciplinary design and construction teams face in their everyday work. Enabling students to understand the area of activity and responsibilities of building design professionals(architects, civil engineers,..) Fundamentals of technical literacy: engineering drawing, graphical representations in building sciences and engineering: plan, section, elevation, three dimensional presentation; obligatory elements of these technical drawings: title, scale, orientation,
authors’ and company data; conventions concerning the purpose of small / large scale plans: situation plan, main design, construction designs, detail drawings, urban planning plans); conventional symbols for elements of a building (e.g. walls, windows, doors, stairs etc.), symbols for different materials and elements of utility systems; logic of numerical (metric) description. Different fields of construction: architecture, civil engineering, urban planning; their aim, logic, basic concepts. Considerations preceding the selection of a structure; material – structure – form – economic efficiency: different possible solutions, optimization; Methods and systems of construction (traditional, monolithic, and assembling). Basics of building science: properties of building materials, physics of buildings; thermal and moist insulation, noise protection, heating and cooling systems; economy and ecology of construction: "ecologically sustainable building", alternative energy resources (e.g. solar energy). Function of a building; utility distribution main system; connecting different parts of a building horizontally and vertically; access to a building; connecting differential settlements; traffic in movement and standstill; urban infrastructure; bridges and viaducts; basic concepts and problems of urban and territorial planning; impact of buildings on environment.

4. Environmental Emissions (5 ECTS)

The objective of the course is to introduce a student with the environmental emissions issues caused by nature and anthropogenic activity.

Within lectures, the following will be delivered:

- Introduction and basic terms in the field of environmental emissions – EMISSION, ENVIRONMENT
- Basic constituents of the environment – AIR, WATER & SOIL
- Natural sources of environmental emissions
- Environmental emissions caused by anthropogenic activity
- Main sources of air, water and soil emissions: metallurgy, mineral sources industry, process chemical industry, wood etc.
- Air pollution problem solution for minimisation of solid particles and gaseous compounds emissions
- Global warming and greenhouses gasses
- The possibilities for greenhouses effect reduction
- Ozone holes
- Brief overview of wastewater treatment methods
- Introduction to soil remediation
- Mankind as direct source of environmental emissions
- Short overview of environmental protection – NATIONAL PARKS & PARKS OF NATURE

Seminars will include analysis of particular case studies as well as solving of simple problems from the field of environmental engineering.

Laboratory practicum will include introduction to the Gas Analyser 5000 and determination of parameters in the polluted environment.
5. **Environmental Physical Factors (5 ECTS)**

The objective of the course is to introduce a student with the environmental physical factors and its meaning within the field of environmental engineering.

Within lectures, the following will be delivered:

- Ionising and non-ionising irradiation and human health
- Electric and electromagnetic fields and human health
- Irradiation from the Sun and impact on living beings
- Global warming and impact on living beings
- Ozone layer
- Noise and human health
- Environmental management (ISO standards, EMAS, OHSAS, EVABAT, HACCP)
- Sustainable development
- Environmental aspects and impacts
- Atom and radioactivity - \(\alpha \)-, \(\beta \)- and \(\gamma \)-irradiation
- Nuclear fission and fusion
- Exploitation of nuclear energy
- Nuclear waste and decommission of nuclear power plant.

Seminars will include analysis of particular case studies from the field of environmental engineering.

6. **Ecological Modelling (6 ECTS)**

The goal of the course is developing competence on the graduated level for understanding and application of mathematical models in environmental protection. The basic models for environment are covered: air, water, noise, risk, social environment and ecological models and their role both in environmental and economic decision-making discussed. The course is divided on theoretical and computational part with exercises, emphasizing the topics according to the interests of students.

7. **Environmental Risk Assessment (4 ECTS)**

The objective of the course is to introduce a student with the environmental risk assessment principles as well as to broaden the standard knowledge gained within this course on the application field of environmental protection.

Within lectures the following will be delivered:

- Introduction and definition of the terms hazard, risk, environmental risk assessment
- Examples of industrial accidents: Seveso (Italy), Bhopal (India), Chernobyl (Ukraine), Fukushima (Japan), Seveso II Directive
- Implementation of Seveso II Directive into Croatian legislation
- Quantitative and qualitative risk assessment
- Risk analysis and risk management
- Minimization risks goals „Carrot diagram“
- Tolerance area and risk minimisation measures
- Risk matrix
- Statistical risk analysis
- Event tree analysis
• Fault tree analysis
• Methods and environmental risk assessment
• Categories of consequences
• Categories of probabilities.

Seminars will include analysis of particular case studies from the field of environmental engineering.

8. Groundwater Protection (5 ECTS)

Introduction – The importance of groundwater; The link between groundwater pollution and the environment; Human impact on groundwater; Occurrences of groundwater.

Criteria for groundwater protection – Status of groundwater protection; The criteria for determining the protection zones; Methods of preparation expert background documents; Protection in Croatia; The experience of European countries.

Alluvial aquifers – Research methods; Types and mechanism of contaminations; The application of mathematical models; Examples of protection.

The protection of karst aquifers – Basic characteristics; Research Methods; Basic elements for evaluating natural vulnerability, hazard and risk assessment; Examples of protection.

Final overview – Application of GIS in groundwater protection. The decision-making system of groundwater protection.

9. Water Management (4 ECTS)

10. Hydrothermal Reservoirs (4 ECTS)

Lectures and exercises with a field trip: Fundamentals of underground heat transfer; thermal conditions inside the Earth and the Earth's crust.; continental plate tectonics (4L +2E). Conductive and convective heat transfer, distribution and types of geothermal reservoirs (2L +1E). Hydrodynamic conditions in north-western Croatia on the example of Zagreb thermal aquifer (2L +1E). Gringarten form; analysis of geothermal energy reserves and recoverable reserves of deposits (2L +1E). Impact of corrosion and scaling in the pipeline system; techno-economic characteristics of geothermal reservoirs in Croatia (4L +2E). Fundamentals of using geothermal energy; Lindal diagram (4L +2E). Equipment of systems for direct use of geothermal energy and applications: greenhouses, fish farms, space heating
in industry, propulsion of the low temperature Stirling engine (4L +2E). Geothermal heat pumps and borehole heat exchangers (GHP, DHE); conversion of geothermal energy into electrical energy: plants with dry or superheated steam, condensing process, steam separation plants, binary systems, combined process (4L +2E). Impact of geothermal energy on the environment (2L +1E). Overview of installed geothermal plants in Europe and worldwide (2L +1E).

11. Basic Principles of Waste Management (5 ECTS)

Students will gain knowledge of the basics on management of different types of waste including municipal waste and waste from various production processes and industries with which engineers face in professional work. Through this collegium will be analysed different segments of waste streams, such as the identification, waste characterization, methods of collection, treatment and disposal with an emphasis on environmental and economic aspects of waste management and with the application of the principles of waste management hierarchy.

12. Waste Management (4 ECTS)

Lectures (30): Introduction (2). Basic concepts of waste management (2). Design of waste management systems - integrated system elements, responsibilities, design process (2). Waste management centres - elements of the system (facilities), interrelationships, basic characteristics (2). Programmes for reduction of waste, tools for programme development, assessment of product lifecycle (2). Hazardous waste management - characteristics, quantities, types (4). Toxicity, sources (2). Treatment, storage, disposal of hazardous waste (2). Treatment of hazardous waste (physical-chemical treatment, remediation, solidification, thermal treatment) (2). Reducing the amount and hazardous properties of waste (2). Industrial waste management practices - chemical industry, refineries, metallurgical industry, power industry, food industry, pharmaceutical industry, waste management in harbours (4). Methodology for the development of basic waste characterization (4).

Exercise (15): Examination of typical practical examples related to lecture topics (15).
Seminar (15): Independent assignment (seminar essay) on topics related to waste management.

13. Soil Mechanics I (6 ECTS)

Empirical Distributions: empirical data and statistical characteristics, frequency polygons, arithmetic mean, variance, moments;

Correlation and Regression: two-dimensional statistical characteristics scatter diagram, smallest square method, regression line, covariance, correlation coefficient, equation of variance analysis;

Probability: simple event and probability definition, algebra of events, independent events, conditional probability, Bayes formula; random variable: probability function, distribution function, expected value, variance, moments. Discrete random variable, Binomial distribution, Poisson distribution. Continuous random variable, Normal distribution, Logarithm-normal distribution, Gamma distribution;
Hypothesis Test: statistical hypothesis and testing, critical value and region of significant decreases, types of errors, χ^2 test, t Test, f Test;

Estimation of Distributions Parameters: sample, interval estimations of expected value and dispersion, preciseness and reliability of estimation, sample sizes.

Knowledge testing and examinations: Preliminary examination, written and oral examination

15. **Geostatistics in Environmental Protection** (4 ECTS)

Lectures (30) and exercises (15): Generally about geostatistics. History of geostatistics – assessment of ore body. Application of geostatistical methods in other areas and Environmental Engineering. (3+0); Generally about interpolation. Estimation of analysed parameter value at every point of the investigated area based on the known values at sampling points. Surfer 8 program. Review, analysis and comparison of interpolation methods and graphical interpretation of the spatial distribution of the analysed parameter. (3+0); Data base in Surfer 8. Spatial distribution model of analysed parameter by different interpolation methods. Iso line chart. (1+2); Estimation of interpolation method reliability. Cross validation procedure and estimate of error variance for each interpolation method for the same database. (1+2); Analysis and comparison of different interpolation methods models. Selecting the best interpolation method for a specific spatial distribution model based on cross validation results and graphical interpretation. (1+2); Geostatistics. Spatial correlation and regionalised variable. Characteristics of regionalised variable and impact range (neighbourhood). Comparison of statistics and geostatistics. Analysis of differences between statistics and geostatistics. (3+0); Variogram - basic tool of geostatistics. Definition of gamma function. Variogram as graphical presentation of gamma function. Basic components and characteristics of variogram; sill and range of variogram, shape of gamma function. Regionalised variable influence on gamma function and variogram characteristics. (3+0); Experimental variogram. Construction of simple experimental variogram. Correlogram. Construction of simple correlogram. Comparison of variogram and correlogram. (1+2); Lag and lag tolerance at experimental variogram. Influence of lag size on variogram shape. Construction of experimental variograms for same data by different lags and lag tolerances. (1+2); Theoretical variogram. Mathematical formula for gamma function inside research area and regionalised variable range. Characteristics of theoretical variogram. Fitting: selection of the best theoretical variogram for a specific experimental variogram. (2+1); Nugget effect. Cause of nugget effect. Influence of nugget effect on estimate of error. Definition of optimal value of fitted variogram parameters (range, nugget). (1+2); Kriging. Basic principles of kriging technics. Types of kriging. Selection of kriging type yielding the least estimate of error. (2+1); Anisotropy. Definition of anisotropy characteristics for research area. Definition of position of anisotropy axis. Variographic analysis by anisotropy axis. (2+1) Presentation and analysis of geostatistical method application in solving environmental engineering problems. (3+0); Presentation of students’ seminar assignments. (3+0).

16. **Groundwater Modelling** (5 ECTS)

Lectures (30): Introduction and basic terms (1). Monitoring hydrological parameters (precipitation, surface water) (2). Groundwater monitoring (quantity and quality of water) (2). Sampling procedures in the unsaturated and saturated zones of the aquifer (exploration drilling, sampling techniques and conservation methods for solid, liquid and gaseous samples) (2). Groundwater monitoring at several levels of the aquifer (multilevel monitoring) (1). Aquifer monitoring design with different types of porosity (intergranular, fissure, fissure-cavernous porosity) (2). Design and installation of wells for groundwater monitoring in different aquifer types (2). Field equipment and instruments for measuring
groundwater quantity and quality in situ and on-line (2). Determining the monitoring mode for different purposes (2). Water monitoring under the EU Water Framework Directive (1).

Auditory exercises (10): Hydrological analysis, interaction of surface water and groundwater - example of calculating water balance (1).

Examples of defining the observational network for groundwater monitoring in different types of aquifers (2). Methods and frequency of measurement and groundwater sampling depending on monitoring type and observed parameters - implementation of recommendations and regulations, best practice (2). Review of modern technology in groundwater monitoring and methods of processing monitoring results (2). Using the results of monitoring groundwater quantity and quality for various purposes - examples from practice (1). Quiz (2).

Seminars (5): Students are required to independently examine, using literature, a practical example of groundwater monitoring, and present it in ppt. form

17. Mathematics I (8 ECTS)

18. Mathematics II (8 ECTS)

20. Master Thesis (18 ECTS)